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Study of the effective viscosity of suspensions is not only of interest in science, but also of 
great practical relevance to industries, such as the petrochemical industry, food and 
nutrition, materials processing and so on. In this paper, an attempt is made to establish 
theoretically the correlation between the effective viscosity of suspensions and their 
microstructural features. Firstly, the method for microstructural characterization developed 
by Fan et al. will be introduced to describe effectively the particle distribution in 
a suspension, and then the analogy between viscosity and field properties will be used to 
develop a new approach for the effective viscosity of suspensions. The new approach 
conside?s implicitly the effects of size, shape, orientation and distribution of the solid 
particles within the suspension through the topological parameters. Therefore, it can be 
applied to a suspension containing solid particles with any size, shape, orientation and 
distribution. Compared with other models available in the literature, the present approach is 
more realistic and more versatile. It can be applied to both liquids containing solid particles 
with a very high viscosity, and porous suspensions where the second phase has a vanishing 
viscosity. Perhaps more importantly, the present approach can predict the well-known 
S-shaped Iogq-volume fraction curve in the whole range of microstructures (from 
completely continuous to completely discontinuous) and is in better agreement with 
experimental results. 

11 Introduction 
Suspension normally refers to mixtures of at least one 
liquid and one dispersed solid phase. However, 
a liquid containing a dispersed gaseous phase can also 
be treated as a suspension (porous suspension) as far 
as the effective viscosity of the phase mixtures is con- 
cerned. Study of viscosity of suspensions is not only 
a matter of science, but also of great practical concern 
in industries, such as the petrochemical industry, food 
and nutrition, composite materials processing, sinter- 
ing of powder compacts and so on. However, the 
theory of viscosity of suspensions is not well de- 
veloped [1, 2]. Until now, the theoretical treatments of 
viscosity of suspensions have been mainly concen- 
trated in relatively dilute suspensions containing 
spherical solid particles [1], and they can be classi- 
fied into two categories: hydrodynamic approaches 
and analogous approaches. The hydrodynamic ap- 
proaches are based on hydrodynamic principles, and 
have been reviewed in detail by Saltzer and Schulz [2]. 
Those approaches either try to extend Einstein's exact 
relationship [3] for dilute spherical suspensions to 
high concentrations of the solid phase [4, 5], or intend 
to treat the effect of non-spherical particles [6-8], or 
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aim to consider the interaction between individual 
particles on the hydrodynamic behaviour of a suspen- 
sion [9-11]. On the other hand, the analogous ap- 
proaches utilize the mathematical analogy between 
field properties and viscous flow of suspensions, and 
treat the effective viscosity as a field property. There- 
fore, the equations derived for field properties can be 
directly applied to calculate the effective viscosity of 
suspensions [1, 2]. It has already been concluded by 
Saltzer and Schulz [2] that up to now, there is no 
theoretical treatment which is capable of calculating 
the relative viscosity of suspensions with non-spheri- 
cal particles at high volume fraction of the solid phase. 
It is now generally believedthat a realistic theoretical 
treatment of the effective viscosity of suspensions has 
to address the influence of size, shape, orientation and 
distribution of the solid particles in the liquid phase on 
the behaviour of viscous flow [1, 2]. 

In this paper, the analogous approach will be used 
to derive a new equation for predicting the effective 
viscosity of suspensions. In contrast to the previous 
models, the new approach considers implicitly the 
effects of size, shape, orientation and distribution of 
the solid particles within the suspension. Therefore, it 
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can be applied to a suspension containing solid par- 
ticles with any size, shape, orientation and distribu- 
tion. In addition, the new equation can also be directly 
applied to porous suspensions. Finally, a comparison 
will be made between theoretical predictions and ex- 
perimental results from the literature. 

2. IV l icrostructural  c h a r a c t e r i z a t i o n  
The quantitative characterization of a two-phase 
microstructure involves analysis of both geometrical 
and topological quantities. The geometrical character- 
ization is well established and has been reviewed ex- 
tensively by Underwood [12]. This usually involves 
the analysis and measurement of grain size, volume 
fraction and particle spacing. However, the topologi- 
cal characterization of a two-phase microstructure is 
inherently more difficult. In a previous attempt, Fan et  

aI. [13] developed a series of topological parameters, 
such as separation, separated volume, degree of conti- 
nuity and degree of separation, based on the topolo- 
gical parameters, contiguity and continuous volume 
proposed by Gurland and co-worker [14, 15]. These 
topological parameters can be either measured experi- 
mentally or calculated theoretically under certain sim- 
plified assumptions about the real microstructure 
E 13]. The combination of such topological parameters 
can offer an effective description of the phase distribu- 
tion in any two-phase microstructure. 

According to the proposed topological transforma- 
tion [13], a two-phase microstructure (denoted as ~[3 
hereafter) with any grain size, grain shape and phase 
distribution, as illustrated schematically in Fig. la, can 
be transformed topologically into a body with three 
microstructural elements aligned in parallel, which is 
illustrated schematically in Fig. lb. Element I (EI) 
consists of the continuous a-phase with a volume 
fraction off~o (the continuous volume of the a-phase); 
element II (EII) consists of the continuous D-phase 
with a volume fraction o f f~  (the continuous volume 
of the [3-phase); element III (EIII) consists of the long- 
range a-D chains. Therefore, there are only phase 
boundaries in EIII. The volume fraction of EIII is 
defined by the degree of separation, Fs. The volume 
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Figure 1 Schematic illustration of the topological transformation 
from (a) microstructure A to (b) microstructure B [13]. It should be 
emphasized that  this graph is just a "schematic" illustration of the 
topological transformation and does not represent any quantitative 
information such as volume fraction, grain size and grain shape. 
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fractions of the cx-phase (f~m) and [3-phase (f~m) in EIII 
body can be calculated by the following equations 

L - L o  
faIII : (1) 

Fs 

f[3III = 1 --fxIII (2) 

As was discussed in detail elsewhere [13, 16-20], 
microstructures A and B (see Fig. 1) are mechanically 
equivalent along the aligned direction of microstruc- 
ture B. As far as the field properties are concerned, 
taking electrical conductivity as an example, micro- 
structures A and B are also equivalent along the 
aligned direction provided that the electrical current 
I of the applied electrical field is along this same 
direction [21]. As a consequence of this topological 
transformation, the determination of the effective field 
properties of a complicated two-phase microstructure 
can be replaced by an analysis of the simpler but 
equivalent microstructure with three well-defined 
microstruetural elements. 

The following aspects on microstructural character- 
ization need further explanation: 

1. The topological parameters developed by Fan 
et  aI. [13] were derived by means of statistics and 
probability theory, and hence they have to be treated 
in terms of averages and statistics. They reflect impli- 
citly the change in size, shape, orientation and distri- 
bution of the second phase. 

2. In general cases, the topological parameters have 
to be measured experimentally by applying a standard 
metallographic method described by Underwood 
[12]. However, under the assumption of equiaxed 
grain and random distribution, they can also be cal- 
culated, for example, 

f~c _ f ~  d~ - U 2 R  (3) 
+ + L R  

f ~  = f~d~ + f~d~ = i s  + f ~ R  (4) 

V s  = 1 - Lo - (5) 

where R is the grain size ratio and is defined as 
R = d~/d~. 

3. In cases where experimentally measured 
topological parameters are not available, the follow- 
ing power law can be used to approximate the con- 
tinuous volumes: 

L~ = f 2  (6) 

f~c = f~ (7) 

For example, the experimentally measured continuous 
volume of the WC phase in Co-WC composites 
[15,221 can be adequately represented by n = 4 [16]. 

4. Topological parameters are directional [13]. The 
measurement of all the topological parameters of 
a given composite with specific microstructural fea- 
tures must be made along the direction of the field 
intensity (e.g. the electrical current I). In addition, the 
topological transformation must also be made along 
this same direction. 



3. The effective viscosity of suspensions 
A group of physical properties, such as moduli of 
elasticity, electrical conductivity, dielectric constant, 
magnetic permeability, thermal conductivity, diffusion 
coefficient and so on, are governed by the same form 
of constitutive equations, and are therefore mathemat- 
ically analogous [23]. This group of physical proper- 
ties of composite materials are usually referred to as 
the effective field properties or transport properties in 
the literature 1-24]. Consequently, a theoretical solu- 
tion to any field property within the group can be 
applied to other field properties by direct analogy 
E23-25]. 

Field property in general can be defined by equa- 
tions of the following type 

~1 = - q ) V T  (8) 

where/1 is a flow density, T = T (x, y, z) a three-dimen- 
sional field, and �9 an effective field property. Mean- 
while, the viscosity of Newtonian flow, q, is defined by 
the following equation 

dv 
(9) 

z~" = q d y  

where z~ is the shear stress in the (x,z) plane, and 
dv/dy the velocity gradient in y direction. Thus, one 
can modify Equation 9 for steady laminar flow of an 
incompressible fluid in such a manner that the direct 
analogy between Equations 8 and 9 is obvious [2]. In 
fact, such analogy was found as early as 1900 by Cohn 
[26] and later by Lamb [27] and Maruhn [28]. They 
found that the laws governing the potential flow are 
identical to those for the electrostatic field. Therefore, 
the viscosity of suspensions can be treated as a field 
property. 

In previous work, Fan [21,29] has derived the 
following equation to describe the effective field prop- 
erty (@~) of a two-phase composite (a-~) as functions 
of the field properties of the constituent phases (~b ~ 
and �9 ~) and topological parameters of the composite: 

@~ = O~f~ + O~f~ + (10) 
(I)13falIl + Oc~fl3III 

where the subscripts cz and 13 denote ct and [3 phases. 
Equation 10 is applicable to a two-phase composite 
with any combination of volume fraction, particle size, 
shape and distribution. It has been shown that the 
predictions for various field properties by Equation 10 
are in good agreement with experimental data 
[21,29]. By the direct analogy discussed previously, 
the effective viscosity (q~ of a suspension (liquid 
:z containing solid [3 particles) can therefore, be, de- 
scribed in terms of viscosity of the constituent phases 
(q~ and Vl~) and the topological parameters by the 
following equation: 

Normally, in a suspension, the viscosity of the dis- 
persed phase (solid particles) is much higher than that 
of the liquid matrix, i.e. q~>> q~. However, as a special 
case of suspension, the gaseous phase in a powder 
compact during sintering has a much lower viscosity 
than the matrix, being very close to zero (q~ g 0). 
Thus, one obtains the following equation for the vis- 
cosity of a porous suspension, qP: 

o r  

n ~ = n=Lo (12) 

TIp 
n, - - Lo (13) rh 

where qr is the normalized viscosity of porous suspen- 
sions. It is very interesting to note in Equation 13 that 
the normalized viscosity of a porous suspension is 
simply equal to the continuous volume of the liquid 
phase. 

4. Comparison with experimental  results 
4.1. Suspensions with solid dispersions 
The measurements of the viscosity of glass melts con- 
taining solid dispersion were carried out recently by 
one of the authors [30] in a Searle-type rotation 
viscometer, which was calibrated using the standard 
glass I (soda-lime glass) of the German Glass Society 
(DGG) in the temperature range of 1273-1773 K. The 
two suspensions of interest here are Na20-SiO2 melts 
containing SiO2 particles at 1773 K and Na20-GeO2 
melts containing GeO2 particles at 1273 K. At 1773 K 
SiO2 particles have a hexagonal crystal structure 
(trydimite) with a nearly equiaxed morphology (aspect 
ratio is about 1.25) [31], while GeO2 particles at 
1273 K are rutile with a more elongated morphology 
(aspect ratio is about 3) [32, 33]. The measured viscosity 
data are presented as a function of the volume fraction of 
the solid phase in Fig. 2 for Na20-SiO2 melts 
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Similarly, Equation 11 can also be applied to a sus- 
pension with any combination of volume fraction, 
size, shape and distribution of the solid particles. 

Figure 2 The theoretically predicted normalized effective viscosity 
of Na20-SiO / melt containing SiO e solid particles at 1773 K by 
the present approach in comparison with the experimental data 
from Boccaccini et al. [30]i Also shown here are the theoretical 
predictions by Sattzer and Schulz's model [1]. Key: �9 Experi- 
mental Boccaccini et al. [30t; . . . .  Saltze and Schulz's model [1]; 
- -  this approach. 
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Figure 3 The theoretically predicted effective viscosity of 
Na20-GeO 2 containing GeO 2 solid particles at 1273 K by the 
present approach in comparison with the experimental data from 
Boccaccini et al. [30]. Key: �9 Exp. Boccaccini et al. [30]; this 
calculation. 
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Figure 4 The theoretically predicted normalized effective viscosity 
of porous glasses as a fuinction of volume fraction of pores by the 
present approach in comparison with the experimental data from 
literature. �9 for commercial aluminosilicate [35], �9 for cordierite- 
type glass [36] and this calculation. 

containing SiO2 particles at 1773 K and in Fig. 3 for 
NazOq~3eO2 melts containing GeO2 particles at1273 K. 

To apply the present approach to the above two 
suspensions, we need to know the topological para- 
meters (f~o, f~c and Fs) which characterize the distribu- 
tion of the solid particles in the melt. Unfortunately, 
experimentally measured topological data are not 
available for these two systems in the literature. How- 
ever, as already mentioned in Section 2, they can be 
estimated by assigning the m and n values in Equa- 
tions 6 and 7. Compared with a solid two-phase struc- 
ture having a random distribution where m and n have 
a value around 4, the solid particles in a suspension at 
high temperature are much more separated than the 
liquid phase. Thus, we choose m = 1.1 and n = 25 for 
Na20-SiO2 melts containing SiO2 particles at 
1773 K, and m = 1.1 and n = 40 for Na20-GeOz 
melts containing GeO2 particles at  1273 K. The vis- 
cosity data for each constituent phase are from the 
experimental results by Boccaccini et aI. [30]. The 
theoretical predictions of Equation 11 are compared 
with the experimental data in Figs 2 and 3 for 
Na20-SiO 2 and NagO-GeOz suspensions, respec- 
tively. Figs 2 and 3 indicate that the theoretical predic- 
tions are in good agreement with the experimental 
data in the whole range of volume fraction of the solid 
particles. It is very interesting to note that the theoret- 
ical predictions with the present approach in Fig. 2 
follow the exact variation trend of the experimental data. 

4.2. P o r o u s  g l a s s e s  
In glass suspensions the viscosity of the solid disper- 
soids are much higher than that of the liquid phase, In 
contrast, in the porous glass (a porous suspension) the 
dispersoids (gas) at the sintering temperature have 
a vanishing viscosity. It is of great interest to be able to 
understand the effect of gaseous dispersoids on the 
viscous flow of porous g!ass during sintering, i.e. the 
densification,: forming and creep behaviour at high 
temperature [34-37]. 
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Figure 5 The theoretically predicted normalized effective viscosity 
of a porous suspension (soda-lime glass) as a function of volume 
fraction of pores by the present approach in comparison with the 
experimental data [37]. Key: �9 experimental Rahaman and De 
Jonghe [37]; - -  this calculation. 

However it is difficult to characterize experi- 
mentally the pore size, shape and distribution in por- 
ous glass at the sintering temperature [30]. Therefore, 
we will choose the m value in Equation 6 to approxim- 
ate the pore distribution. For cordierite-type glass and 
commercial Coming glass the value 3.5 is assigned to 
m in Equation 6, and for soda-lime glass m = 2.5. The 
theoretically predicted normalized viscosities of differ- 
ent porous glasses from Equation 13 are presented in 
Figs 4 and 5 in comparison with corresponding ex- 
perimental data [35-37 ]. It is shown in Figs 4 and 
5 that the theoretical predictions are in fairly good 
agreement with the experimental data. 

5. Discussion 
5.1. Comparison with other theoretical 

models 
There are a number of theoretical models available in 
the literature for the effective viscosity of suspensions. 
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However, most of them are either empirical or de- 
veloped only for specific suspensions at low volume 
fraction of solid particles I-2]. Perhaps the most useful 
model is the one proposed by Saltzer and Schulz [1]. 
Therefore, in this section, their model will be introduc- 
ed briefly and will be compared with the present 
approach.  

By analogy to the field properties of two-phase 
materials developed by Niesel [38], Saltzer and Schulz 
[1] proposed the following equation for the relative 
effective viscosity (qr = rlo/qliqu~a) of suspensions at 
the limit of T h i q u i d / T ] s o l i d  ~ 0 

1 -- COS 2 C( COS 20~ 

Tlr = (1 - - f ) -q ,  q -- F + 1 -- 2~ 

(14) 

where f is the volume fraction of the solid phase, 
F(0 < F < 0.5) is a shape factor which is a function of 
the aspect ratio of the solid particles, and cos2a 
(0 <cos  2a < 1) is the orientation factor. For 
Na20-SiO2 melts containing SiO2 particles at 
1773 K, it was shown that F = 0.3, cos 2 ~ = 1/3 [30]. 
The theoretical predictions for Na20 SiO2 melts con- 
taining SiO2 particles at 1773 K by both the present 
approach (Equation 11 and Equation 14) are shown in 
Fig. 2 in comparison with the experimental results 
[30]. Fig. 2 indicates that the present approach can 
achieve good agreement with experimental data over 
the whole range of volume fraction of the solid phase, 
while Equation 14 can only offer predictions with 
a reasonable accuracy for dilute suspensions ( f  < 0.6). 
The main reason for the discrepancy lies in the differ- 
ence in microstructural considerations by the two 
approaches. Saltzer and Schulz's approach [1] (Equa- 
tion 14) considers explicitly the effects on viscosity of 
the shape and orientation of solid particles, but it does 
not consider the effect of solid particle distribution in 
the liquid phase, while the present approach (Equa- 
tion 11) considers not only the effect of solid particle 
distribution, but also the effects of shape and orienta- 
tion of solid particles implicitly through three 
topological parameters (f~c, f~c and Fs) [13]. It can be 
demonstrated that the effect of solid particle distribu- 
tion in the liquid phase on the flow behaviour of 
suspensions can be crucial (see Section 5.2). 

In addition, the present approach treats the viscos- 
ity of the dispersed phase at the temperature of con- 
cern as a factor for consideration, which reflects the 
physical nature of the dispersed phases, and conse- 
quently, Equation 11 can be applied to any suspension 
irrespective of the viscosity of the constituent phases. 
In contrast, Saltzer and Schulz's approach can only be 
applied to suspensions where rhiquid/qsolld ~ 0. 

To sum up, in comparison with Saltzer and Schulz's 
model, the basic considerations by the present ap- 
proaches more closely the real situation for the flow 
behaviour of suspensions, and therefore it can be ap- 
plied to any suspension irrespective of the viscosity, 
size, shape, orientation and distribution of the con- 
stituent phases. The predictions by the present 
approach should have high accuracy once the topolo- 

gical parameters (f~o, f~o and F+) are properly meas- 
ured by experiment. 

5.2. The effect of the solid particle 
distribution on the viscosity of 
suspensions 

A large number of experimental data for the viscosity 
of suspensions are available in the literature, and are 
plotted in Fig. 6 as a function of the volume fraction of 
the solid phase. It is obvious from Fig. 6 that the 
experimental data have a considerable scatter, parti- 
cularly at high volume fraction of the solid particles. It 
is now well accepted that this scatter is caused by the 
difference in particle distribution within different 
liquid suspensions [1]. In dilute suspensions, the solid 
particles are completely separated by the liquid phase, 
and the distribution of solid particles can be uniquely 
described as uniform (f~o = 0). This explains why the 
scatter in experimental data at low volume fraction is 
not so severe. With increasing volume fraction of the 
solid phase, the number of solid particle contacts 
increases. This will result in an increase in viscosity. 
However, due to the difference in physical nature, size, 
shape, orientation and distribution of Solid particles in 
different suspensions, the increase in viscosity will 
largely depend on the characteristics of specific sus- 
pensions, which gives rise to the considerable scatter 
at high Volume fraction in Fig. 6. Therefore, any realis- 
tic theoretical approach to the viscosity of suspensions 
has to consider the effect of particle arrangement. The 
present approach (Equation 11) has a provision for the 
evaluation of such a microstructural effect. 
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Figure 6 Experimentally measured normalized effective viscosity of 
suspensions as a function of volume fraction of solid particles. Key: 
[] Eirirch et at. [39,40]; �9 Eilers [41]; [] Vand [10]; O Robinson 
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caccini et aL [30]; [] Ward and Whitmore [431; �9 Boccaccini et al. 

[30]. 
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If we assume that there is a liquid suspension, where 
] ~ s o l l d / ] l t i q u i d  = 109, and the continuous volume of the 
liquid phase can be approximated by m = 1.1 in Equa- 
tion 6, the effect of solid particle distribution on the 
effective viscosity of the suspension can be evaluated 
by changing the n parameter in Equation 7. The cal- 
culated results are presented in Fig. 7 as a function of 
volume fraction of the solid phase and the n para- 
meters, which are indicated by the data attached to 
each line. There are two extreme cases: one is n = l 
(f~o =f~) which physically means that a l l  the solid 
particles are completely continuous; the other one is 
n = oo (f~o = 0) which represents a suspension where 
all the solid particles are completely discontinuous. 
When 1 < n < 0% the solid phase is partially continu- 
ous, and the larger the n value is the more discontinu- 
ous the solid phase is. For  a given n value (e.g. n = 20), 
Equation 11 actually predicts the well-known S- 
shaped logrl-volume fraction curve. The effective vis- 
cosity of dilute suspensions increases slowly with in- 
creasing volume fraction of the solid particles until it 
reaches a critical volume fraction where viscosity in- 
creases sharply with further increase of volume frac- 
tion, while at high volume fraction, this increase in 
viscosity will slow down again. At a given volume 
fraction, the effective viscosity of a suspension in- 
creases with increasing contiguity of the solid par- 
ticles. 

In addition, there is a very interesting point in Fig. 
7 worth noting. At low volume fraction of the solid 
phase, irrespective of the n value used, the predicted 
effective viscosity always coincides with the line pre- 

d ic ted by n = oo. The two lines separate at a critical 
volume fraction, f* .  Since n = oo defines a suspension 
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Figure 7 The theoretically calculated normalized effective viscosity 
of a hypothetical suspension w i t h  T]solid/Tlliqui d = 10 9 as a function of 
volume fraction of solid particles and the n parameter in Equation 7, 
which are indicated by the data attached to each line. It is also 
assumed that m = 1.1 in Equation 6. 

in which the solid particles are completely discontinu- 
ous (no particle contact), for a given n value, f *  defines 
the volume fraction at which solid particles start to 
make contact with each other. Once the volume frac- 
tion exceeds f* ,  the effective viscdsity increases sharp- 
ly with further increase of volume fraction. The 
calculated f *  values at m = 1.1 are plotted in Fig. 8 as 
a function of the n parameter. There are two limiting 
cases: one is f *  = 0 corresponding to n = 1; the other 
is f *  = 1 corresponding to n = oo. In general cases 
(1 < n < oo), f *  increases with increasing n value 
(Fig. 8). 

However, to evaluate quantitatively the effect of 
particle distribution on the effective viscosity of sus- 
pensions by experiments might be difficult. It is obvi- 
ous that further experimental work is required to 
characterize the solid particle distribution in suspen- 
sions. 

Finally, it is necessary to discuss a little further the 
n and m parameters in Equations 6 and 7. Although 
m = n = 1 and m = n = co correspond to completely 
continuous and discontinuous microstructures as dis- 
cussed previously, rn and n are not microstructural 
parameters and have no clear physical meaning. The 
reason for proposing Equations 6 and 7 are three-fold. 
Firstly, the experimentally measured f~o and f~c data 
can be adequately fitted by such a power law as 
demonstrated by a number of studies in two-phase 
alloys E51, 52]. Secondly, Equations 6 and 7 can offer 
us a convenient way to vary systematically the con- 
tinuous volumes of the constituent phases in a two- 
phase structure over the whole range of volume frac- 
tion, so that the effect of particle distribution can be 
evaluated theoretically, as shown in Fig. 7. Finally, in 
systems where experimentally measured topological 
parameters are not available, Equations 6 and 7 can 
be used as a reasonable approximation of the continu- 
ous volume by choosing the right m and n values. 
Nevertheless, m and n are not fitting parameters in this 
approach, f~c and f~o, as microstructural parameters, 
should be measured experimentally in general. 
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6. Summary 
Based on the microstructural characterization method 
and the analogy between viscosity and field properties 

(or transport properties), a new approach to the effec- 
tive viscosity of suspensions has been developed. The 
new approach can consider implicitly the effects of 
size, shape, orientation and distribution of the solid 
particles within the suspension. Therefore, it can be 
applied to a suspension containing solid particles with 
any size, shape, orientation and distribution. Com- 
pared with other models available in the literature, the 
present approach is more realistic and more versatile. 
It can be applied to both liquids containing solid 
particles with a very high viscosity, and porous sus- 
pensions where the second phase is a gas with a van, 
ishing viscosity. Perhaps more importantly, the pres- 
ent approach can predict the well-known S-shaped 
log~l-volume fraction curve i n  the whole range of 
microstructures (from completely continuous to com- 
pletely discontinuous) and is in better agreement with 
experimental results. Finally, the effect of solid particle 
distribution on the effective viscosity of suspensions 
has also been demonstrated quantitatively. 
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